Washtenaw Community College Comprehensive Report

ATT 140 Aluminum Welding for Transportation Applications Effective Term: Fall 2025

Course Cover

College: Advanced Technologies and Public Service Careers **Division:** Advanced Technologies and Public Service Careers

Department: Transportation Technologies

Discipline: Automotive & Transportation Tech (new)

Course Number: 140 Org Number: 14100

Full Course Title: Aluminum Welding for Transportation Applications

Transcript Title: Alum Weld for Transport Apps

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page

Reason for Submission: Course Change

Change Information:

Consultation with all departments affected by this course is required.

Rationale: Update the course for the new discipline.

Proposed Start Semester: Fall 2024

Course Description: In this course, students will develop skills and techniques associated with the cosmetic and structural repair of modern collision-damaged vehicles. Students are introduced to the welding process and equipment used to weld aluminum panels and coupons of varying thickness. Safe welding techniques, site preparation, tool choice and other Inter-Industry Conference on Auto Collision Repair (I-CAR) and National Automotive Technicians Education Foundation (NATEF) rules will be covered. This course was previously ABR 140.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 45 Student: 45

Lab: Instructor: 60 Student: 60 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 105 Student: 105

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Requisites

Prerequisite

ATT 114 minimum grade B-

General Education

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Recognize and apply shop rules, procedures and safety standards associated with composite materials.

Assessment 1

Assessment Tool: Outcome-related skills checklist

Assessment Date: Fall 2025

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 75% of the students will score an average of

3.5 of 5 (70%) or higher on safety-related tasks.

Who will score and analyze the data: Departmental faculty

2. Perform weld bead parameters on aluminum panels and coupons.

Assessment 1

Assessment Tool: Outcome-related skills checklist

Assessment Date: Fall 2025

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 75% of the students will score an average of

3.5 of 5 (70%) or higher on safety-related tasks.

Who will score and analyze the data: Departmental faculty

3. Perform proper panel fitment.

Assessment 1

Assessment Tool: Outcome-related skills checklist

Assessment Date: Fall 2025

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 75% of the students will score an average of

3.5 of 5 (70%) or higher on safety-related tasks.

Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Identify and properly use welding gloves, welding jackets, respirators and welding helmets.
- 2. Recognize and use proper safety practices.
- 3. Evaluate vacuum capture and dust extraction systems according to safety requirements.
- 4. Identify and interpret original equipment manufacturer (OEM) recommended welding equipment.
- 5. Recognize and perform proper metal inert gas (MIG) welding process on aluminum and other metals.
- 6. Demonstrate proper welder setup and adjustments.
- 7. Perform open butt weld in horizontal, vertical and overhead positions on aluminum and other metals.
- 8. Perform lap weld in horizontal, vertical and overhead positions on aluminum and other metals.
- 9. Perform butt weld with insert in horizontal, vertical and overhead positions on aluminum and other metals.
- 10. Demonstrate proper panel fitment and weld site preparation.

New Resources for Course

Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities

Level III classroom Computer workstations/lab

Reviewer	Action	Date
Faculty Preparer:		
Shawn Deron	Faculty Preparer	Mar 27, 2024
Department Chair/Area Director:		
Rocky Roberts	Recommend Approval	Mar 27, 2024
Dean:		
Eva Samulski	Recommend Approval	Apr 03, 2024
Curriculum Committee Chair:		
Randy Van Wagnen	Recommend Approval	Mar 20, 2025
Assessment Committee Chair:		
Jessica Hale	Recommend Approval	Mar 20, 2025
Vice President for Instruction:		
Brandon Tucker	Approve	Mar 21, 2025
Brandon Tucker	Approve	Mar 21, 2025

Washtenaw Community College Comprehensive Report

ABR 140 Aluminum Welding for Automotive Applications Effective Term: Fall 2017

Course Cover

Division: Advanced Technologies and Public Service Careers

Department: Automotive Body **Discipline:** Auto Body Repair

Course Number: 140 Org Number: 14110

Full Course Title: Aluminum Welding for Automotive Applications

Transcript Title: Aluminum Welding for Auto Apps **Is Consultation with other department(s) required:** No

Publish in the Following: College Catalog, Time Schedule, Web Page

Reason for Submission: New Course

Change Information:

Rationale: This course is one of four new courses that will be offered to support the Auto Body Repair

and Collision Repair Technician programs. **Proposed Start Semester:** Fall 2017

Course Description: In this course, students develop skills and techniques associated with the cosmetic and structural repair of modern collision-damaged vehicles. Students are introduced to the welding process and equipment used to weld aluminum panels and coupons of varying thickness. Safe welding techniques, site preparation, tool choice and other I-CAR (Inter-Industry Conference on Auto Collision Repair) and NATEF rules will be covered.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 45 Student: 45

Lab: Instructor: 60 Student: 60 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 105 Student: 105

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Requisites

Prerequisite

ABR 114 minimum grade "B-"

General Education

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Recognize and apply shop rules, procedures and safety standards associated with composite materials.

Assessment 1

Assessment Tool: Student Achievement Records

Assessment Date: Winter 2020 Assessment Cycle: Every Three Years

Course section(s)/other population: All Sections

Number students to be assessed: All students in all sections

How the assessment will be scored: Departmentally-developed rubric.

Standard of success to be used for this assessment: 75% of the students will score an average of

3.5 of 5 (70%) or higher on safety-related tasks.

Who will score and analyze the data: Department chair and instructors.

2. Perform weld bead parameters on aluminum panels and coupons.

Assessment 1

Assessment Tool: Student Achievement Records.

Assessment Date: Winter 2020

Assessment Cycle: Every Three Years

Course section(s)/other population: All Sections.

Number students to be assessed: All students in all sections.

How the assessment will be scored: Departmentally-developed rubric.

Standard of success to be used for this assessment: 75% of the students will score an average of 3.5 of 5 (70%) or higher.

Who will score and analyze the data: Department chair and instructors.

3. Perform proper panel fitment.

Assessment 1

Assessment Tool: Student Achievement Records.

Assessment Date: Winter 2020

Assessment Cycle: Every Three Years

Course section(s)/other population: All Sections.

Number students to be assessed: All students in all sections.

How the assessment will be scored: Departmentally-developed rubric.

Standard of success to be used for this assessment: 75% of the students will score an average of 3.5 of 5 (70%) or higher.

Who will score and analyze the data: Department chair and instructors.

Course Objectives

- 1. Identify and properly use welding gloves, welding jackets, respirators and welding helmets.
- 2. Recognize and use proper safety practices.
- 3. Evaluate vacuum capture and dust extraction systems according to safety requirements.
- 4. Identify and interpret OEM (Original Equipment Manufacturer) recommended welding equipment.
- 5. Recognize and perform proper MIG welding process on aluminum and other metals.
- 6. Demonstrate proper welder set up and adjustments.
- 7. Perform open butt weld in horizontal, vertical and overhead positions on aluminum and other metals.
- 8. Perform lap weld in horizontal, vertical and overhead positions on aluminum and other metals.
- 9. Perform butt weld with insert in horizontal, vertical and overhead positions on aluminum and other metals.
- 10. Demonstrate proper panel fitment and weld site preparation.

New Resources for Course

Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities Level III classroom

Level III classroom Computer workstations/lab

Reviewer	Action	Date
Faculty Preparer:		
Timothy VanSchoick	Faculty Preparer	Feb 22, 2017
Department Chair/Area Director:		
Gary Sobbry	Recommend Approval	Feb 22, 2017
Dean:		
Brandon Tucker	Recommend Approval	Mar 01, 2017
Curriculum Committee Chair:		
David Wooten	Recommend Approval	Mar 26, 2017
Assessment Committee Chair:		
Ruth Walsh	Recommend Approval	Mar 26, 2017
Vice President for Instruction:		
Kimberly Hurns	Approve	Mar 27, 2017